

VENUS: A Geometrical Representation for Quantum State Visualization

Shaolun RUAN

Ribo

YUAN

Qiang GUAN

Ying MAO

FORDHAM

MASON

Zhepeng WANG

Wei

XU

Yong WANG

6 Brookhaven National Laboratory

1

Agenda

- Background
- Motivation
- Existing work
- VENUS
- Evaluation
- Future work
- Conclusion

Background Quantum computing

Quantum computing has achieved great success in recent years

Background Quantum computing

Quantum superposition

n agambaa gaga ka agaba acayaa ka agaba acayaa acayaa acayaa agaba acayaa acayaa acayaa agaba acayaa ay acayaa acayaa acayaa acayaa acayaa acayaa acayaa

Quantum entanglement

During computation process, no measurement is made

Quantum superposition a qubit can be in the state $|0\rangle$ or $|1\rangle$ simultaneously

Background Quantum superposition

Quantum entanglement

one qubit can be impacted by the other entangled qubit directly

Motivation Visualization for multi-qubit state

It is important to visualize the quantum state with more than one qubit

the basic requirement for quantum entanglements

Motivation

Motivation Visualization for explaining probability

It is important to visually explain the measured probability of basis states e.g., the probability of state $|0\rangle$ is, say 0.5, but why?

Motivation

Existing work Bloch Sphere

[1] Bloch, Felix. "Nuclear induction." Physical review 70.7-8 (1946): 460.

Existing work

Existing work Bloch Sphere's issues

Visualization for only one qubit [2]

Non-intuitive representation of probability

[2] Bardin, Joseph C., Daniel H. Slichter, and David J. Reilly. "Microwaves in quantum computing." IEEE journal of microwaves 1.1 (2021): 403-427.
[3] Tory, Melanie, et al. "Visualization task performance with 2D, 3D, and combination displays." IEEE transactions on visualization and computer graphics 12.1 (2005): 2-13.

Existing work

VENUS High-level summary

- VENUS supports the visualization for both single-qubit and two-qubit states
- VENUS visualizes and explains the measured probability

 $\left|\psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1
ight
angle$

 $|\psi
angle = lpha |0
angle + eta |1
angle$

Two-qubit state visualization

 $|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle$

Evaluation Expert interview

Tasks:

Q1	It is useful to show the quantum entanglement when observ-
	ing quantum states.
Q2	It is easy to identify the entangled states via the visually
	correlated semicircles.
Q3	It is helpful to show the probability distribution of each
	state.
Q4	It is intuitive to show probability distribution via the semi-
	circle area.
Q5	It is informative to represent states via the state vectors.
Q6	It is easy to identify the state vectors via the line pairs within
	each semicircle.
Q7	The user interactions in the interface are useful and smooth.
Q8	The design can be integrated into the workflow well.
Q9	The 2D visual design is easy to view.

Results:

"I like the idea of using the probability calculation equation to naturally visualize the probability distribution. I can directly check the probability without any manual calculation."

In the future, we aim to improve

- time-consuming input of state vectors
- scalability of qubit numbers

Conclusion

We propose VENUS, a geometrical visualization for quantum state visualization

1. Probability visualization

Allow the explicit representation of measured probability Visually explain the probability via the state vectors

2. Two-qubit state visualization

Support the single-qubit and two-qubit state visualization

Conclusion

Q&A

VENUS: A Geometrical Representation for Quantum State Visualization

Email: slruan.2021@phdcs.smu.edu.sg My homepage: https://shaolun-ruan.com/

